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Abstract
Questions: Are	 self-	organizing	maps	 (SOMs)	useful	 for	patterning	coastal	wetland	
vegetation	communities?	Do	SOMs	provide	robust	alternatives	to	traditional	classifi-
cation	methods,	 particularly	when	 underlying	 species	 response	 functions	 are	 un-
known	or	difficult	to	approximate,	or	when	a	need	exists	to	continuously	classify	new	
samples	obtained	under	ongoing	long-	term	ecosystem	monitoring	programs	as	they	
become	available?
Location: Coastal	Louisiana,	USA.
Methods: A	SOM	was	trained	from	in-	situ	observations	of	559	vegetation	species	
relative	cover	data	from	2,526	samples	collected	over	8	years	at	343	locations	across	
coastal	 Louisiana.	Hierarchical	 cluster	 analysis	was	 applied	 to	 the	 SOM	output	 to	
delineate	vegetation	community	types,	and	indicator	species	analysis	was	conducted.	
Salinity	and	flood	duration	were	compared	across	the	delineated	community	types.
Results: The	SOM	patterned	the	2,526	training	samples	 into	260	output	neurons,	
which	were	further	clustered	into	eleven	community	types.	Clear	gradients	in	salinity	
and	flood	duration	existed	among	the	community	types,	and	geographic	zonation	of	
the	communities	was	evident	across	the	landscape.	At	some	locations	assemblages	
were	 temporally	 stable;	 at	 other	 locations,	 they	 varied	 considerably.	 Samples	 not	
used	in	training	the	network	were	effectively	projected	onto	the	SOM	and	assigned	
to	one	of	the	delineated	community	types.
Conclusions: The	SOM	was	effective	in	delineating	plant	communities	in	the	region	
that	were	 qualitatively	 similar	 to	 those	 obtained	 in	 previous	 investigations.	 Being	
robust	to	skewed	distributions	and	the	presence	of	outliers,	SOMs	provide	an	alter-
native	 to	 traditional	distribution-	based	 statistical	 approaches.	Their	 ability	 to	effi-
ciently	 classify	 new	 data	 into	 existing	 community	 types	makes	 their	 use	 an	 ideal	
approach	to	classifying	samples	obtained	from	ongoing,	long-	term	ecological	moni-
toring	programs.
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1  | INTRODUC TION

Under	 existing	 climate	 change	 scenarios,	 coastal	 wetland	 ecosys-
tems	 are	 anticipated	 to	 experience	 profound	 impacts	 to	 coastal	
hydrology,	which	may	drive	shifts	in	marsh	vegetation	species	com-
position	 (Callaway,	 Parker,	Vasey,	&	Schile,	 2007;	Howard,	Biagas,	
&	Allain,	2016;	Janousek	&	Folger,	2014;	Snedden	&	Steyer,	2013).	
These	 impacts	 include	 altered	 salinity	 and	 inundation	 regimes	 as-
sociated	with	either	sea-	level	 rise	 (Bhuiyan	&	Dutta,	2012;	Hilton,	
Najjar,	Zhong,	&	Li,	2008)	or	changes	in	freshwater	delivery	brought	
about	by	altered	precipitation	regimes	(Robins	et	al.,	2016).	The	abil-
ity	to	objectively	and	efficiently	classify	coastal	wetland	vegetation	
communities	can	be	essential	to	quantifying	how	zonation	responds	
to	 changing	environmental	 conditions,	 and	 is	 thus	 fundamental	 to	
successful	coastal	wetland	ecosystem	management	and	restoration	
in	the	face	of	climate	change.

The	 wetlands	 in	 coastal	 Louisiana	 along	 the	 northern	 Gulf	 of	
Mexico	 account	 for	 roughly	 40%	of	 all	 the	wetlands	 in	 the	 conti-
nental	United	States	and	have	exhibited	high	rates	of	land	loss	over	
the	 last	century,	during	which	roughly	5,000	km2	of	 land	has	tran-
sitioned	 to	open	water	 (Couvillion,	Beck,	 Schoolmaster,	&	Fischer,	
2017)	largely	due	to	a	combination	of	submergence	and	diminished	
sediment	supply	 (Penland	et	al.,	2001).	The	region	 is	now	the	sub-
ject	of	a	globally	unprecedented	ecosystem	restoration	program	es-
timated	to	cost	$50–100	billion	over	the	next	50	years	 (Peyronnin	
et	al.,	2017).	Plant	communities	often	reflect	ecosystem	processes	
and	conditions	at	 local	and	landscape	scales	more	effectively	than	
any	other	set	of	factors	(Albert	&	Minc,	2004),	and	different	com-
munities	can	 influence	processes	such	as	hydrodynamics	 (Leonard	
&	Luther,	1995),	vertical	accretion	(Pasternack	&	Brush,	2001),	and	
carbon	 burial	 (Wang,	 Xu,	 &	 Rongrong,	 2016)	 in	 distinct	 ways.	 As	
such,	substantial	efforts	to	monitor	the	zonation	of	marsh	vegeta-
tion	 communities	 in	 coastal	 Louisiana	 and	 how	 it	may	 respond	 to	
restoration	 activities	 and	 continued	 disturbance	 such	 as	 sea-	level	
rise	and	tropical	storm	impacts	have	been	in	place	for	over	20	years	
(Folse	et	al.,	2014;	Steyer,	Raynie,	Steller,	Fuller,	&	Swenson,	1995)	
and	are	expected	to	continue	(Hijuelos	&	Hemmerling,	2016).

Previous	 efforts	 to	 visualize	 gradients	 in	 vegetation	 commu-
nity	 composition	 in	 the	 region	 (Snedden	 &	 Steyer,	 2013;	 Visser,	
Sasser,	Chabreck,	&	Linscombe,	1998;	Visser,	Sasser,	Linscombe,	&	
Chabreck,	 2000)	 have	 all	 relied	 on	 parametric,	 distribution-	based	
multivariate	statistical	approaches.	These	approaches	(two-	way	in-
dicator	 species	analysis,	 canonical	 correspondence	analysis),	 along	
with	 other	 commonly	 used	 eigen-	based	 analytical	 approaches	 to	
ordination	such	as	principal	components	analysis	(PCA)	and	redun-
dancy	 analysis,	 all	 make	 assumptions	 regarding	 the	 shape	 of	 the	
species-	abundance	 response	 along	 environmental	 gradients	 (e.g.,	
linear	vs.	unimodal;	Jongman,	ter	Braak,	&	van	Tongeren,	1995),	and	
the	nature	of	these	responses	is	often	unknown	or	varies	depending	
on	the	species	 in	question.	Additionally,	 these	techniques	perform	
best	when	species	distributions	are	not	strongly	skewed	(Legendre	&	
Birks,	2012).	Yet	species-	abundance	datasets	typically	contain	many	
zeros	that	arise	from	the	occurrence	of	 rare	species	or	 those	with	

narrow	realized	environmental	niches,	and	they	may	remain	strongly	
skewed	even	after	transformation	by	logarithmic	or	other	functions	
(Lek	 et	al.,	 1996;	 Brosse,	Giraudel	 &	 Lek,	 2001;	Quinn	&	Keough,	
2002).

Over	 the	 last	 two	 decades,	 a	 multitude	 of	 artificial	 neural	
network	 (ANN)	 approaches	 have	 gained	 appeal	 as	 an	 alterna-
tive	to	classical	statistical	methods	for	analyses	of	multidimen-
sional	 data	 (Chon,	 2011).	 Among	 ANNs,	 self-	organizing	 maps	
(SOMs;	 Kohonen,	 2001)	 have	 become	 increasingly	 popular	 for	
the	analysis	of	large	ecological	datasets,	including	studies	of	di-
atoms	(Tison	et	al.,	2005),	fish	(Chen,	Lek,	Lek-	Ang,	&	Zhongjie,	
2012;	Park,	Grenouillet,	Esperance,	&	Lek,	2006a),	benthic	mac-
roinvertebrates	 (Bae,	Chon,	&	Park,	2012;	Lencioni,	Marziali,	&	
Rossaro,	 2012;	 Li,	 Xiang,	 &	 Li,	 2015),	 birds	 (Lee,	 Kwak,	 Lee,	 &	
Kim,	2007),	forest	vegetation	(Adamczyk,	Kurzak,	Park,	&	Kruk,	
2013),	and	water	quality	(Chea,	Grenouillet,	&	Lek,	2016).	Unlike	
parametric	 statistical	 approaches,	 SOMs	make	no	 assumptions	
related	 to	 distributions	 of	 variables	 or	 correlations	 between	
those	 variables	 (Giraudel	 &	 Lek,	 2001).	 Essentially,	 SOMs	 are	
methods	for	non-	linear	ordination	analysis	in	that	they	provide	a	
non-	linear	projection	of	the	training	dataset	onto	fewer	(usually	
two)	dimensions	that	approximates	its	probability	density	func-
tion	(Kohonen,	2001).	This	two-	dimensional	projection	consists	
of	 a	 network	 of	 cells,	 or	 neurons,	 each	 described	 by	 a	 vector	
that	 corresponds	 to	 a	 discrete	 region	 of	 the	 training	 dataset's	
multidimensional	space.	After	a	SOM	is	trained,	traditional	clus-
tering	 algorithms	 can	 be	 applied	 to	 the	 SOM	 results	 to	 delin-
eate	discrete	community	types.	At	this	point,	new	samples	can	
be	projected	onto	 the	clustered	SOM	to	classify	 them	 into	 the	
existing	community	types	without	altering	the	existing	cluster-
ing	 scheme.	 In	 this	 fashion,	 SOMs	 are	 a	 particularly	 attractive	
approach	 for	 classifying	 samples	 obtained	 from	ongoing,	 long-	
term	ecological	monitoring	programs	(Park,	Chon,	Kwak,	&	Lek,	
2004),	 and	 they	 allow	 for	 the	 verification	 of	 predictive	model	
outcomes	as	data	become	available	to	do	so.	In	this	study,	a	SOM	
was	trained	with	marsh	vegetation	species	abundance	data	ob-
tained	 from	 a	 long-	term	 regional	 coastal	 wetland	 monitoring	
program	in	Louisiana,	USA,	as	an	unsupervised	machine-	learning	
approach	 for	 classifying	 coastal	 wetland	 vegetation	 communi-
ties	in	the	region.

2  | METHODS

2.1 | Study area and data collection

Vegetation	cover	data	used	 in	 this	 study	were	obtained	 from	343	
sites	 selected	 from	 the	 Coastwide	 Reference	 Monitoring	 System	
(CRMS,	 www.lacoast.gov/crms;	 Figure	1—see	 Supporting	 informa-
tion	Appendix	 S1	 for	 a	 list	 of	 sites	 and	 years	 used	 for	 training),	 a	
statewide	 network	 of	 wetland	 monitoring	 stations	 distributed	
across	 coastal	 Louisiana	 that	has	been	 in	place	 since	2006.	Visual	
surveys	 of	 emergent	 marsh	 vegetation	 percent	 cover	 are	 con-
ducted	at	ten	2	m	×	2	m	permanent	vegetation	plots	situated	along	

http://www.lacoast.gov/crms
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a	280-	m	transect	at	each	site	annually	(July–September;	Folse	et	al.,	
2014).	Plant	taxonomic	nomenclature	followed	the	USDA	PLANTS	
Database	(USDA,	NRCS,	2019).

At	 each	of	 the	343	 sites,	 a	 logging	 instrument	 installed	within	
150	m	of	the	vegetation	transects	recorded	salinity	and	water	sur-
face	elevation	data	at	hourly	intervals.	For	this	study,	it	was	assumed	
that	salinity	and	water	surface	elevation	did	not	vary	over	this	dis-
tance	and	 thus,	values	measured	at	each	site	were	assumed	to	be	
identical	to	those	in	all	vegetation	plots	at	each	site.	Marsh	surface	
elevation	at	each	vegetation	plot	was	surveyed	in	2013	to	the	same	
vertical	datum	(North	American	Vertical	Datum	1988)	as	the	site's	
corresponding	water	level	recorder.	With	these	data,	average	annual	
salinity	 and	 percent	 time	 inundated	 were	 calculated	 for	 the	 time	
period	October	 2013–October	 2014.	 Percent	 time	 inundated	was	
calculated	as	the	percent	of	time	 in	which	water	surface	elevation	
exceeded	the	marsh	elevation	of	each	vegetation	plot.

2.2 | Modelling methods

Self-	organizing	 maps	 are	 rooted	 in	 an	 unsupervised	 competitive	
learning	process	(Kohonen,	2001),	and	thus,	they	make	no	prior	as-
sumptions	regarding	the	distribution	of	the	data,	nor	do	they	require	
predefined	 target	 classes	 (community	 types	 in	 this	 case).	 Rather,	
training	 of	 the	 network	 and	 the	 resulting	 classes	 is	 entirely	 data-	
driven,	whereby	 the	network	 learns	 to	 classify	 by	 identifying	pat-
terns	among	the	samples	in	the	training	data	set.	The	SOM	consists	
of	two	layers—an	input	layer	presented	to	the	network	as	a	matrix	X 
with	rows	corresponding	to	samples	n	and	columns	corresponding	
to	variables	p,	and	an	output	layer	(or	map)	formed	by	nodes	(or	map	
units)	arranged	in	a	two-	dimensional	grid.	For	this	study,	each	input	
node	is	a	measure	of	the	abundance	of	each	taxon,	and	the	output	
layer	is	composed	of	M	output	nodes	arranged	in	a	hexagonal	lattice.	
A	hexagonal,	as	opposed	to	a	square,	lattice	is	typically	used	because	

it	maximizes	the	number	of	neighbors	for	each	node	in	the	map.	The	
number	 of	map	units	 along	 the	 vertical	Mvert	 and	horizontal	Mhorz 
axes	of	the	map	are	typically	set	such	that	their	ratio	approximates	
that	of	the	first	two	PCA	eigenvalues	obtained	from	the	training	data	
and	 their	product	Mvert	×	Mhorz = M	 is	approximately	equal	 to	5

√

N 
(Vesanto	&	Alhoniemi,	2000),	where	N	is	the	number	of	samples	in	
the	training	set	(n = 1,	2,	…,	N).	A	few	other	parameters	of	the	train-
ing	algorithm	must	be	predetermined	(e.g.,	training	iterations,	neigh-
borhood	size,	learning	rate),	but	no	further	assumptions	or	decisions	
need	to	be	made	prior	to	training.

The	relative	cover	values	used	to	train	the	SOM	were	obtained	
from	annual	cover	surveys	conducted	between	2006	and	2014	at	
the	343	selected	sites	(Figure	1)	and	calculated	from	species	cover	
averaged	 across	 all	 plots	within	 each	 site.	 This	 training	 data	 set	
consisted	of	2,526	samples	and	559	species,	and	the	learning	pro-
cess	was	conducted	using	the	SOM	Toolbox	(Alhoniemi,	Himberg,	
Parhankangas,	 &	 Vesanto,	 2000;	 http://www.cis.hut.fi/projects/
somtoolbox/)	 in	 Matlab.	 Because	 SOMs	 make	 no	 distributional	
assumptions	 about	 the	 data	 (Kohonen,	 2001),	 transformations	
are	 unnecessary	 and	were	 not	 applied	 here.	 The	 training	 phase	
begins	by	first	associating	a	weight	vector	wm	composed	of	P el-
ements	 (p = 1,	2,	…,	P; m = 1,	2,	…,	M)	where	P	 is	 the	number	of	
variables	(taxa)	in	the	data	set	and	M	is	the	number	of	map	units,	
to	each	map	unit	such	that	each	map	unit	can	be	conceptualized	
as	 a	 virtual	 sample	whose	 species’	 relative	 abundances	 are	 indi-
cated	by	its	weight	vector	(Figure	2).	Here,	initial	values	for	each	
weight	vector	were	assigned	with	the	linear	initialization	algorithm	
(Kohonen,	2001),	where	PCA	is	first	performed	on	the	training	data	
and	the	first	two	eigenvectors	are	interpolated	in	two	dimensions	
across	the	map.	Linear	initialization	ensures	that,	prior	to	training,	
the	 initial	 values	of	 the	weight	 vectors	 roughly	 approximate	 the	
probability	density	function	of	the	training	data,	allowing	for	more	
rapid	convergence	during	the	training	phase.	The	collection	of	the	

F IGURE  1 Location	of	343	sites	where	vegetation	cover,	salinity,	and	water	level	were	collected.	Color	indicates	vegetation	community	
type,	as	classified	by	the	self-	organizing	map,	based	on	taxa	composition	observed	during	the	2013	Coastwide	Reference	Monitoring	System	
(CRMS)	vegetation	survey	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

http://www.cis.hut.fi/projects/somtoolbox/
http://www.cis.hut.fi/projects/somtoolbox/
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pth	 element	 of	 all	 vectors	 in	 the	map	 specifies	 the	 pth	 compo-
nent	 plane	 of	 the	map,	which	 represents	 the	 distribution	 of	 the	
pth	species’	relative	cover	across	the	SOM.	As	the	first	step	in	the	
learning	procedure,	a	sample	xn	is	drawn	from	the	training	dataset	
and	compared	to	each	map	unit.	The	weight	vector	from	the	map	
unit	c	with	the	lowest	Euclidean	distance	from	the	training	sample	
is	designated	the	best	matching	unit	 (BMU).	The	elements	 in	the	
BMU's	vector	are	altered	to	become	more	similar	to	the	training	
sample's	vector	xn,	as	are	(to	a	lesser	degree)	those	of	neighboring	
map	units	according	to	the	learning	function:

Here	 hcm	 is	 a	 Gaussian	 neighborhood	 function,	 or	 smoothing	
kernel

where α	is	a	learning	rate	factor	and	σ	defines	the	width	of	the	ker-
nel,	both	of	which	decrease	with	increasing	number	of	learning	cy-
cles t,	and	‖rm	−	rc

2‖	 is	the	distance	on	the	map	between	the	BMU	
and	the	mth	map	unit.	This	procedure	is	repeated	for	all	training	sam-
ples,	and	then	the	entire	learning	process	is	repeated	several	times	
until	the	results	converge.

The	 importance	of	each	 taxon	 in	structuring	 the	SOM	was	as-
sessed	with	the	global	structuring	index	(GSI;	Park,	Gevrey,	Lek,	&	
Giraudel,	2005),	computed	as

where	‖rj	−	rm‖	 is	 the	distance	on	 the	map	between	 the	map	units	
j and m.	Thus,	high	GSI	values	 indicate	strong	gradients	 in	a	given	
taxon's	 relative	 abundance	 across	 the	map.	Many	 taxa	 in	 species-	
abundance	 datasets	 are	 rare,	 and	 as	 such,	 they	 often	 add	 noise	
and	provide	little	information	to	community	analysis	(Gauch,	1982;	
McCune	&	Grace,	2002).	However,	simply	being	rare	does	not	nec-
essarily	 preclude	 their	 informative	 value	 to	 ordination.	 Here	 the	
importance	of	taxa	to	ordination	was	assessed	with	GSI	scores	and	
used	as	the	basis	for	inclusion	in	the	SOM.	First,	GSI	scores	were	cal-
culated	for	a	SOM	trained	with	all	taxa	present	in	the	training	data-
set,	and	values	of	all	GSI	scores	were	summed.	This	process	was	then	
repeated	with	fewer	species,	each	time	discarding	the	species	with	
the	lowest	GSI	score	until	only	ten	species	remained	in	the	model.	
Subsequently	 the	differences	of	 the	 summed	GSI	 values	between	
the	original	dataset	 (full	model	with	all	 taxa)	and	reduced	datasets	
were	calculated,	and	a	reduced	SOM	that	struck	a	balance	between	
minimizing	this	difference	and	reducing	dimensionality	(as	indicated	
by	the	presence	of	a	local	minimum	in	a	plot	of	number	of	species	vs	
summed	GSI	scores	of	full	and	reduced	species	models)	was	selected	
(see	Park	et	al.,	2006b).

By	 identifying	 BMUs	 for	 each	 training	 sample,	 SOMs	 initially	
classify	them	into	one	of	M	groups	projected	onto	discrete	regions	
(map	units)	of	a	two-	dimensional	plane.	Where	M	is	large,	additional	
compression	 into	a	smaller	number	of	classes	 (q = 1,	…,	Q)	 is	often	
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F IGURE  2 Schematic	diagram	of	the	
structure	of	the	self-	organizing	map,	
modified	from	Chon,	Park,	Moon,	and	Cha	
(1996)
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desired.	 Here,	 a	 hierarchical	 cluster	 analysis	 was	 applied	 to	 the	
weight	 vectors	 of	 the	 SOM	map	 units	 with	Ward's	 linkage	 based	
on	 Euclidean	 distance.	 Rather	 than	 impose	 prior	 assumptions	 to	
the	number	of	clusters	obtained	 in	 the	analysis,	 the	samples	were	
classified	by	varying	the	number	of	clusters	from	2	to	20,	and	the	
classification	 scheme	 that	 produced	 the	 greatest	mean	 silhouette	
statistic	(Kaufman	&	Rousseeuw,	1990)	was	selected.	At	this	point,	
dendrogram	 branches	 containing	 no	 significant	 indicator	 species	
(obtained	 from	 indicator	 species	 analysis;	 see	 below)	 were	 com-
bined	with	neighboring	branches	 into	 single	 groups	 (Abraão	et	al.,	
2010;	 Salovaara,	 Cárdenas,	 &	 Tuomisto,	 2004).	 Between-	cluster	
differences	 in	 environmental	 variables	 were	 evaluated	 with	 the	
Kruskal–Wallis	 test	 (non-	parametric	 analysis	 of	 variance)	 followed	
by	a	post-	hoc	Tukey	test	for	multiple	comparisons	(Zar,	1984).

Characteristic	 taxa	 for	 each	 community	 type	 were	 identified	
with	 indicator	species	analysis	 (Dufrêne	&	Legendre,	1997),	where	
indicator	values	(IV)	are	calculated	as

where	RAqp	 is	 the	relative	abundance	of	species	p in class q,	com-
puted	as	the	mean	relative	cover	of	species	p in class q,	divided	by	
the	sum	of	mean	relative	cover	values	of	species	p across all classes. 
RFqp	is	the	relative	frequency	of	species	p in class q,	defined	as	the	
proportion	of	samples	in	the	qth	class	that	contain	species	p.	Thus,	
RAqp	is	a	measure	of	species	specificity	to	a	particular	class,	whereas	
RFqp	is	a	measure	of	fidelity.	The	maximum	IV	of	100	occurs	when	in-
dividuals	of	species	p	only	occur	in	samples	assigned	to	group	q,	and	
all	samples	classified	as	q	contain	species	p.	After	computing	IVs,	a	
Monte	Carlo	significance	test	of	observed	maximum	indicator	values	
for	a	given	species	was	applied	with	999	permutations.

Samples	 collected	 under	 separate	 research	 or	monitoring	 pro-
grams	with	compatible	methods	that	were	not	used	in	model	train-
ing	were	then	projected	onto	the	trained	SOM	for	classification.	For	
this	exercise,	high-	density,	 lower-	frequency	helicopter-	based	vege-
tation	 surveys	 conducted	 at	 ~4,000	 sites	 across	 coastal	 Louisiana	
every	 5–10	years	 (see	 Chabreck,	 Linscombe,	 Hartley,	 Johnston,	 &	
Martucci,	2001;	Linscombe	&	Hartley,	2011;	Sasser,	Visser,	Mouton,	
Linscombe,	&	Hartley,	2008,	2014)	were	projected	onto	the	SOM	to	
facilitate	delineation	of	the	geographic	zonation	of	the	eleven	com-
munity	types	at	a	landscape	scale.

3  | RESULTS

A	reduced	SOM	model	trained	with	the	49	most	important	taxa	
(i.e.,	highest	GSI	scores;	Table	1)	was	selected	and	used	for	all	 fur-
ther	analysis	 (see	Supporting	 information	Appendix	S2).	The	SOM	
contained	260	map	units	arranged	across	a	20	×	13	grid,	and	BMUs	
for	the	2,526	training	samples	were	distributed	broadly	across	the	
SOM	(all	but	12	map	units	were	BMUs	for	at	least	one	of	the	training	
samples;	Figure	3).	The	dendrogram	obtained	from	hierarchical	clus-
ter	analysis	was	cut	at	15	groups	to	maximize	the	mean	silhouette	
width	(0.37),	after	which	branches	containing	no	significant	indicator	

IVqp=RAqp×RFqp

TABLE  1 The	49	taxa	retained	to	train	the	reduced	self-	
organizing	map,	along	with	their	abbreviations	and	global	
structuring	indices	(GSIs)

Taxa Abbreviation GSI

Spartina patens SPPA 1,093

Spartina alterniflora SPAL 1,002

Distichlis spicata DISP 572

Phragmites australis PHAU 463

Juncus roemerianus JURO 246

Bolboschoenus robustus BORO 218

Sagittaria lancifolia SALA 209

Schoenoplectus americanus SCAM 179

Panicum hemitomon PAHE 159

Paspalum vaginatum PAVA 158

Polygonum punctatum POPU 136

Alternanthera philoxeroides ALPH 107

Schoenoplectus californicus SCCA 99

Ipomoea sagittata IPSA 82

Typha	spp. TYPHA 78

Eleocharis	spp. ELEOC 77

Leersia hexandria LEHE 77

Typha latifolia TYLA 77

Lythrum lineare LYLI 68

Spartina cynosuroides SPCY 67

Echinochloa walteri ECWA 64

Iva frutescens IVFR 58

Sacciolepsis striata SAST 52

Typha domingensis TYDO 51

Avicennia germinans AVGE 50

Cladium mariscus CLMA 49

Zizaniopsis miliacea ZIMI 48

Ludwigia grandiflora LUGR 48

Colocasia esculenta COES 43

Thelypteris palustris THPA 41

Hydrocotyle umbellata HYUM 37

Amaranthus australis AMAU 36

Eleocharis macrostachya ELMA 34

Bacopa monnieri BAMO 33

Baccharis halimifolia BAHA 32

Sagittaria latifolia SALA2 31

Batis maritima BAMA 31

Cicuta maculate CIMA 30

Cyperus odoratus CYOD 29

Symphyotrichum tenuifolium SYTE 28

Eleocharis cellulosa ELCE 28

Paspalum distichum PADI6 27

Panicum dichotomiflorum PADI 25

(Continues)
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species	were	combined	with	neighboring	branches	into	single	groups	
to	 ultimately	 delineate	 eleven	distinct	 community	 types	 (Figure	3)	
with	 a	mean	 silhouette	width	 of	 0.42.	 The	 twelve	map	 units	 that	
were	not	identified	as	BMUs	for	any	of	the	training	samples	all	fell	
along	community	type	boundaries	in	the	SOM,	essentially	corrobo-
rating	results	of	the	cluster	analysis.

The	 component	 planes	 (Figure	4;	 Supporting	 information	
Appendix	S3)	depict	the	distribution	of	each	component	(vegetation	
taxa)	in	each	SOM	map	unit	and	visually	convey	information	regard-
ing	the	specificity	and	fidelity	of	each	species	in	the	SOM	to	each	
of	the	delineated	community	types.	Most	of	the	taxa	with	high	GSI	
scores	(those	most	important	in	structuring	the	SOM)	were	clearly	
associated	with	 single	 clusters.	 For	 example,	Spartina patens was 
most	prevalent	in	map	units	encompassed	in	the	wiregrass	cluster	
(Figure	3),	even	though	it	was	present	in	smaller	abundances	in	map	
units	 belonging	 to	 several	 other	 clusters.	Other	 species,	 such	 as	
Ipomoea sagittata,	span	a	wide	region	of	the	SOM	and	are	thus	pres-
ent	in	a	variety	of	community	types,	albeit	possibly	in	small	abun-
dances.	The	component	planes	also	confer	qualitative	 indications	
regarding	correlations	among	species.	For	example,	some	species	
tend	to	co-	occur	(e.g.,	Sagittaria lancifolia and Alternanthera philox-
eroides)	 whereas	 others	 are	 rarely	 found	 together	 (e.g.,	 Spartina 

alterniflora and Phragmites australis).	 Some	 community	 types	 are	
dominated	by	different	species,	depending	on	which	region	of	the	
SOM	cluster	 a	 sample	 projects	 onto.	 For	 example,	 the	 upper	 re-
gion	of	the	bulltongue	cluster	is	dominated	by	Sagittaria lancifolia,	
whereas	 the	 lower	 region	 is	 dominated	 by	Polygonum punctatum 
(with	Sagittaria lancifolia	present	in	smaller	abundance).

3.1 | Dominant/indicator species and geographic 
trends of vegetation communities

The	 majority	 of	 the	 eleven	 community	 types	 delineated	 was	
characterized	by	multiple	indicator	species;	however,	five	communi-
ties,	wiregrass,	needlerush,	brackish	mix,	oystergrass,	and	saltgrass,	
had	only	one	indicator	species	(Table	2).	The	species	with	the	highest	
percent	 relative	 cover	was	 an	 indicator	 species	 in	 all	 communities	
with	the	exception	of	the	brackish	mix	community	(Table	3).	For	the	
following	community	descriptions,	geographic	zonation	is	shown	in	
Figure	1,	 and	 commonly	 occurring	 species	 were	 determined	 from	
relative	frequency	values	in	Table	2.

Maidencane	communities	are	dominated	by	Panicum hemitomon 
(IV	86.4)	and	typically	found	 in	the	 inland	extremities	of	the	 inter-
distributary	 basins	 of	 the	Mississippi	 River	 delta	 plain,	 often	 near	
bulltongue	sites	(see	below).	Other	species	common	to	this	commu-
nity	type	include	Leersia hexandria,	Thelypteris palustris,	Alternanthera 
philoxeroides,	Polygonum punctatum,	and	Sagittaria lancifolia.

Three-square	 communities	 are	 dominated	 by	 Schoenoplectus 
americanus	 (IV	 55.6)	with	 Spartina patens	 occurring	 in	 these	 com-
munities	91%	of	the	time.	Three-	square	sites	are	often	located	just	
inland	from	wiregrass	communities.	Other	common	species	for	this	
community	include	Sagittaria lancifolia and Lythrum lineare.

Roseau cane	 communities	 are	 dominated	 by	 Phragmites aus-
tralis	 (IV	85),	 and	often	 co-	occur	with	Spartina patens,	Alternanthera 

Taxa Abbreviation GSI

Sagittaria platyphylla SAPL 23

Leptochloa fusca LEFU 20

Morella cerifera MOCE 20

Bidens laevis BILA 18

Schoenoplectus deltarum SCDE 10

Nelumbo lutea NELU 9

TABLE  1  (Continued)

F IGURE  3  (left)	Classification	of	the	
training	samples	according	to	the	self-	
organizing	map	(SOM).	The	size	of	the	
black	inset	hexagon	in	each	SOM	unit	is	
proportional	to	the	number	of	samples	
assigned	to	that	unit.	The	largest	inset	
hexagon	(upper	right	corner)	represents	
128	samples.	Based	on	hierarchical	cluster	
analysis	with	Ward's	linkage	performed	
on	SOM	output	(right),	SOM	units	were	
classified	into	11	clusters	(vegetation	
community	types)	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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philoxeroides,	and	Polygonum punctatum.	Roseau	cane	communities	are	
most	prevalent	in	the	marshes	at	the	mouth	of	the	Mississippi	River.

Paspalum	 communities	 are	 dominated	 by	 Paspalum vaginatum 
(IV	52.4).	Other	species	common	to	Paspalum	communities	include	
Schoenoplectus californicus,	Spartina patens,	Typha latifolia,	 Ipomoea 
sagittata,	Distichlis spicata, and Echinochloa walteri.	 Paspalum	 sites	
are	most	prevalently	located	near	large	inland	lakes	along	the	west-
ern	reaches	of	coastal	Louisiana	(Figure	1).

Wiregrass	 communities	 are	 dominated	 by	 Spartina patens	 (IV	
39.0).	 Other	 common	 species	 for	 this	 community	 type	 include	
Schoenoplectus americanus,	 Lythrum lineare,	 Ipomoea sagittata,	
Bolboschoenus robustus,	and	Distichlis spicata.	Wiregrass	 is	perhaps	
the	most	widespread	of	all	marsh	community	 types	across	coastal	

Louisiana.	 The	 relatively	 low	 IV	 for	 Spartina patens	 in	 wiregrass	
communities	is	a	reflection	of	the	low	RA	of	this	species,	resulting	
from	the	fact	that	it	is	present	at	all	of	the	eleven	community	types.	
However,	the	species	was	present	at	all	sites	classified	as	wiregrass.

Bulltongue	 communities	 are	 dominated	 by	 Sagittaria lancifolia 
(IV	32.4),	and	often	contain	Polygonum punctatum,	Ipomoea sagittata,	
and Alternanthera philoxeroides.	These	sites	are	most	prevalent	along	
the	inland	reaches	of	the	coastal	zone,	often	intermixed	with	maid-
encane	communities.

Needlerush	 communities	 are	dominated	by	 Juncus roemerianus 
(IV	70.1)	 and	are	generally	 co-	dominated	by	varying	 combinations	
of	Distichlis spicata,	Spartina alterniflora,	Bolboschoenus robustus,	and	
Spartina patens.	 Needlerush	 sites	 are	 most	 prevalent	 toward	 the	

F IGURE  4 Component	planes	for	the	25	taxa	most	important	in	structuring	the	self-	organizing	map	(SOM).	Each	plane	depicts	the	
distribution	of	relative	abundances	for	each	particular	taxon	across	the	SOM.	White	lines	delineate	vegetation	community	types	as	depicted	
in	Figure	3.	Global	structuring	index	(GSI)	values	are	shown	in	the	upper	right-	hand	corner.	Component	planes	for	the	remaining	24	taxa	are	
presented	in	Appendix	S3	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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seaward	extremities	of	the	Mississippi	River	delta	plain,	often	inter-
mixed	with	brackish	mix	and	oystergrass	communities.

Bulrush	communities	are	dominated	by	Bolboschoenus robustus 
(IV	49.9),	often	co-	dominant	with	Distichlis spicata,	Spartina patens,	
and Spartina alterniflora.	Bulrush	sites	are	mostly	concentrated	at	the	
seaward	reaches	of	southwest	Louisiana	(Figure	1).

Brackish mix	communities	are	typically	situated	just	inland	from	
oystergrass	communities	(see	below)	along	the	seaward	end	of	the	
Mississippi	River	delta	plain	(Figure	1),	and	are	dominated	by	Spartina 
alterniflora	 (Tables	2,	3).	Common	co-	occurring	species	of	brackish	
mix	 communities	 include	 Spartina patens,	 Juncus roemerianus,	 and	
Distichlis spicata.	Because	the	common	co-	occurring	species	in	this	
community	also	strongly	co-	occur	in	other	community	types,	brack-
ish	mix	communities	do	not	have	a	strong	indicator	species.	The	sole	
indicator	 species,	Avicennia germinans	 (IV	 7.7)	was	 only	 present	 in	
eight	percent	of	brackish	mix	sites,	even	though	96%	of	the	occur-
rences	of	 this	 species	 are	 found	at	 sites	 classified	as	brackish	mix	
communities	(Table	2).

Oystergrass	communities	are	dominated	by	Spartina alterniflora 
(IV	 49.2;	 Tables	2,	 3),	 and	 often	 co-	occur	with	 small	 coverages	 of	
Juncus roemerianus.	 Oystergrass	 sites	 are	 typically	 located	 at	 the	
seaward	ends	of	the	interdistributary	basins	of	the	Mississippi	River	
delta	plain	(Figure	1).

Saltgrass	 communities	 are	 dominated	 by	 Distichlis spicata	 (IV	
50.8),	 and	 typically	 are	 co-	dominated	 by	 Spartina patens,	 Spartina 
alterniflora,	and	Bolboschoenus robustus.	Saltgrass	sites	are	sporadi-
cally	intermixed	with	brackish	mix	and	wiregrass	communities.

3.2 | Variation in hydrologic variables

Salinity	differed	among	the	community	types	(χ2	=	1494.32;	df = 10; 
p < 0.001)	and	was	highest	for	oystergrass	communities	and	lowest	
for	maidencane	 and	bulltongue	 communities,	which	 did	 not	 differ	
from	each	other	(Figure	5).	Wiregrass,	bulrush,	saltgrass,	needlerush	
and	 brackish	 mix	 communities	 showed	 considerable	 overlap	 with	
respect	to	salinity,	though	wiregrass	and	brackish	mix	communities	

TABLE  3 Mean	%	relative	cover	of	the	seven	most	abundant	taxa	for	each	community	type

Maidencane Three- square Roseau Cane Paspalum

Panicum hemitomon 34 Schoenoplectus americanus 27 Phragmites australis 71 Paspalum vaginatum 24

Leersia hexandria 11 Spartina patens 19 Spartina patens 5 Schoenoplectus 
californicus

13

Sagittaria lancifolia 10 Sagittaria lancifolia 6 Alternanthera 
philoxeroides

4 Spartina patens 11

Eleocharis 7 Lythrum lineare 5 Spartina alterniflora 3 Typha latifolia 10

Thelypteris palustris 5 Cladium mariscus 4 Typha domingensis 2 Ipomoea sagittata 6

Alternanthera 
philoxeroides

4 Eleocharis macrostachya 4 Zizaniopsis miliacea 2 Distichlis spicata 3

Typha 4 Distichlis spicata 4 Polygonum punctatum 2 Echinochloa walteri 3

Wiregrass Bulltongue Needlerush Bulrush

Spartina patens 65 Sagittaria lancifolia 16 Juncus roemerianus 54 Bolboschoenus robustus 24

Distichlis spicata 7 Polygonum punctatum 11 Spartina alterniflora 15 Distichlis spicata 16

Schoenoplectus 
americanus

5 Alternanthera philoxeroides 7 Spartina patens 8 Spartina patens 13

Bolboschoenus robustus 3 Ludwigia grandiflora 4 Distichlis spicata 8 Spartina cynosuroides 8

Ipomoea sagittata 2 Typha 4 Lythrum lineare 2 Spartina alterniflora 7

Lythrum lineare 2 Colocasia esculenta 3 Phragmites australis 2 Paspalum distichum 5

Spartina alterniflora 2 Sacciolepsis striata 3 Bolboschoenus robustus 2 Juncus roemerianus 5

Brackish Mix Oystergrass Saltgrass

Spartina alterniflora 53 Spartina alterniflora 93 Distichlis spicata 49

Spartina patens 20 Juncus roemerianus 4 Spartina patens 21

Juncus roemerianus 10 Spartina patens 1 Spartina alterniflora 15

Distichlis spicata 7 Distichlis spicata 1 Bolboschoenus robustus 6

Bolboschoenus robustus 3 Batis maritima <1 Schoenoplectus 
americanus

2

Avicennia germinans 3 Bolboschoenus robustus <1 Iva frutescens 1

Iva frutescens 2 Avicennia germinans <1 Juncus roemerianus 1

Note.	Bold	indicates	species	was	a	significant	indicator	for	the	group	in	question.
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showed	 clear	 separation	 from	 each	 other.	 Though	 percent	 time	
inundated	 varied	 among	 community	 types	 (χ2	=	117.43;	 df = 10; 
p < 0.001),	 there	was	 considerable	 overlap	 among	 the	 community	

types,	with	inundation	time	lowest	in	needlerush	communities	and	
highest	 in	paspalum.	All	other	community	 types	grouped	 together	
with	respect	to	inundation.

F IGURE  5  (lower)	Boxplots	indicating	average	annual	salinity	(a)	and	percent	time	flooded	(b)	for	the	11	vegetation	community	types	
identified	by	clustering	the	self-	organizing	map	(SOM).	Community	types	are	ordered	from	left	to	right	by	increasing	rank	sums.	In	each	
boxplot,	thick	horizontal	line	indicates	median,	box	indicates	interquartile	range,	and	whiskers	indicate	maximum	and	minimum	values.	
(upper)	Community	types	sharing	the	same	line	did	not	differ	statistically	(α	=	0.05)	as	determined	by	Tukey	multiple	comparisons

F IGURE  6 Examples	of	self-	organizing	map	(SOM)	temporal	trajectories	depicting	annual	variation	in	vegetation	communities	for	
CRMS3565	(a),	CRMS0400	(b)	and	CRMS0225	(c).	Samples	obtained	in	2015	and	2016	were	not	used	in	training	the	SOM	but	were	
projected	onto	the	SOM	after	training,	illustrating	the	ability	of	the	trained	SOM	to	classify	new	samples	as	they	become	available
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3.3 | Classifying new samples

Site	data	from	2015	and	2016,	which	were	not	used	in	the	learning	
process,	were	classified	as	one	of	the	established	community	types	
by	projecting	species	vectors	onto	the	SOM	to	determine	BMUs.	
The	BMU	is	determined	simply	by	selecting	the	SOM	map	unit	m 
for	which	 the	 Euclidean	 distance	 between	 the	weight	 vector	wm 
and	 the	new	 sample	 in	 question	 is	minimized.	 Figure	6	 shows	 an	
example	of	assessing	time-	variation	 in	community	structure	 from	
three	CRMS	sites	 (CRMS3565,	CRMS0400,	CRMS0225;	www.la-
coast.gov/crms),	 from	 2006	 through	 2016.	 Throughout	 this	 time	
period,	 CRMS3565	 occupies	 the	 same	 cluster	 (wiregrass)	 and	
projects	 onto	map	units	 in	 a	 very	 limited	 region	of	 the	SOM,	 in-
dicating	 a	 temporally	 stable	 community	 composition	 (Figure	6a).	
In	 contrast,	 CRMS0400	 shows	 pronounced	 interannual	 shifts	 in	
community	 composition,	 spanning	 a	 wide	 range	 of	 community	
types	(Figure	6b).	CRMS0225	begins	as	a	wiregrass	community	in	
2006	and	remains	so	through	2009,	after	which	it	transitions	to	a	
three-	square	community	and	remains	so	through	2016	(Figure	6c).	
The	 SOM	 enables	 visualization	 of	 these	 temporal	 trends	 and,	 in	
the	case	of	CRMS0225	during	2008–2009,	provides	an	indication	
that	a	community	shift	may	be	under	way	even	though	the	species	
composition	has	not	yet	 crossed	 the	discrete	boundary	 to	a	new	
community	 type.	The	SOM	was	also	effective	at	classifying	sam-
ples	collected	during	the	2013	helicopter-	based	survey	(Figure	7).	
Geographic	zonation	of	the	plant	communities	based	on	the	heli-
copter	 survey	 is,	 qualitatively	 speaking,	 very	 similar	 to	 that	 ob-
tained	from	the	ground-	based	survey	conducted	in	2013	(Figure	1).

4  | DISCUSSION

Coastal	emergent	marsh	vegetation	assemblages	of	the	northern	Gulf	
of	Mexico	were	patterned	with	a	SOM	according	 to	distributional	

similarities	of	species	relative	cover	data	from	over	2,500	samples	
collected	at	nearly	350	sites	spanning	8	years.	Hierarchical	cluster	
analysis,	 in	 conjunction	with	 the	 silhouette	 statistic	 and	 indicator	
species	 analysis,	 delineated	 the	 SOM	 output	 into	 eleven	 distinct	
vegetation	 community	 types	 that,	 broadly	 speaking,	 resembled	
those	put	forth	from	previous	efforts	to	delineate	community	types	
with	conventional	statistical	approaches	 (Snedden	&	Steyer,	2013;	
Visser	et	al.,	1998,	2000).

Salinity	was	clearly	the	most	important	hydrologic	factor	associ-
ated	with	the	spatio-	temporal	variation	of	vegetation	assemblages.	
The	 pronounced	 influence	 of	 salinity	 is	manifest	 by	 the	 relatively	
small	salinity	interquartile	ranges	for	each	community	type	and	the	
greater	degree	of	separation	in	the	Kruskal–Wallis	multiple	compar-
ison	groupings	(Figure	5).	The	influence	of	salinity	is	also	evident	in	
the	 geographic	 zonation	 of	 the	 community	 types,	 whereby	 more	
salt-	tolerant	community	types	(e.g.,	oystergrass,	brackish	mix,	salt-
grass)	are	situated	at	the	seaward	end	of	estuarine	basins	far	from	
mouths	of	major	rivers;	fresher	community	types	(e.g.,	maidencane,	
bulltongue,	roseau	cane)	tend	to	be	located	either	further	inland	or	
in	 regions	near	 strong	 fluvial	 influence	 (Figure	1).	The	overarching	
importance	 of	 salinity	 in	 structuring	 vegetation	 communities	 ob-
served	in	this	study	is	in	agreement	with	numerous	existing	studies	
(Adams,	 1963;	 Cooper,	 1982;	 Ewing,	 1983;	 Latham,	 Pearlstine,	 &	
Kitchens,	1994;	Odum,	1988;	Phleger,	1971).	Qualitatively,	the	dis-
tribution	of	the	eleven	community	types	across	the	estuarine	salinity	
gradient	in	the	present	study	reflects	findings	of	Snedden	and	Steyer	
(2013),	though	direct	comparisons	are	challenging	given	the	dispar-
ity	in	clustering	approaches	between	the	two	studies.

The	manner	 in	which	 vegetation	 communities	 associated	with	
inundation	was	less	clear.	Median	percent	time	inundated	for	paspa-
lum	 communities	 exceeded	 80%,	 and	 was	 significantly	 greater	
than	 that	 of	 all	 other	 community	 types.	 Cantero,	 Cisneros,	 Zobel,	
and	Cantero	(1998)	observed	paspalum	stands	to	be	located	in	re-
gions	with	high	flood	frequencies	with	durations	exceeding	45	days.	

F IGURE  7 Self-	organizing	map	classification	of	species	cover	data	from	2013	helicopter-	based	vegetation	surveys	conducted	at	4,215	
locations	across	coastal	Louisiana	(Sasser	et	al.,	2014)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

http://www.lacoast.gov/crms
http://www.lacoast.gov/crms
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Among	 the	more	 saline	 community	 types	 in	 this	 study,	 there	was	
a	 change	 in	 species	 composition	 from	 needlerush	 to	 brackish	mix	
to	 oystergrass	 communities	 along	 a	 gradient	 of	 increased	 inunda-
tion,	 consistent	with	 several	 previous	 investigations	 of	 vegetation	
zonation	 along	 elevation	 gradients	 in	 salt	 marshes	 (Eleuterius	 &	
Eleuterius,	 1979;	 Latham	 et	al.,	 1994;	 Niering	 &	 Warren,	 1980;	
Pennings,	Grant,	&	Bertness,	2005).	Despite	these	subtle	patterns	of	
community	zonation	with	respect	to	inundation,	each	of	the	eleven	
community	 types	 delineated	 in	 this	 study	 was,	 broadly	 speaking,	
present	across	a	wide	range	of	inundation	regimes,	as	shown	by	the	
large	interquartile	ranges	(Figure	5).	Yet	previous	investigations	have	
clearly	shown	the	importance	of	 inundation	to	primary	production	
in	 emergent	marsh	macrophytes,	 particularly	 belowground,	where	
increased	 inundation	 leads	 to	 diminished	 production	 for	 a	 variety	
of	species	that	were	dominants	for	the	community	types	identified	
in	this	study,	including	Spartina alterniflora	(oystergrass	and	brackish	
mix	communities;	Voss,	Christian,	&	Morris,	2013;	Snedden,	Cretini,	
&	Patton,	2015),	Juncus roemerianus	(needlerush	communities;	Voss	
et	al.,	 2013),	 Spartina patens	 (wiregrass	 communities;	 Kirwan	 &	
Guntenspergen,	2015;	Snedden	et	al.,	 2015),	Schoenoplectus amer-
icanus	(three-	square	communities;	Schile,	Callaway,	Suding,	&	Kelly,	
2017),	 and	 Sagittaria lancifolia	 (bulltongue	 communities;	 Visser	 &	
Sandy,	2009;	Visser	&	Peterson,	2015).	If	decreased	production	is	an	
ubiquitous	 response	 to	 increased	 inundation	 among	 the	dominant	
species	of	several	community	types,	decreased	total	biomass,	rather	
than	strong	shifts	 in	 species	composition,	may	be	 the	primary	 im-
pact	of	increased	flooding.	Thus,	many	assemblages	observed	here	
may	 often	 persist	 at	 low	 elevations	 corresponding	 to	 sub-	optimal	
production,	possibly	due	to	the	occurrence	of	competitive	interac-
tions	at	higher,	less	stressful	elevations	(Bertness,	1991a,b;	Pennings	
et	al.,	2005).

The	two-	step	classification	procedure	described	here,	whereby	
traditional	cluster	analysis	 is	applied	to	SOM	output	 is,	 in	multiple	
ways,	 a	 robust	 alternative	 to	 classical	 parametric	 statistical	 ap-
proaches	for	examining	gradients	in	vegetation	species	composition.	
The	efficacy	of	this	two-	step	approach	can	be	compared	to	results	
obtained	with	hierarchical	agglomerative	clustering	applied	directly	
to	the	Bray–Curtis	similarity	matrix	of	the	full	(559	taxa)	dataset	by	
comparing	 mean	 silhouette	 widths	 between	 the	 two	 approaches.	
The	 mean	 silhouette	 width	 for	 the	 eleven-	class	 SOM-	based	 ap-
proach	with	the	49	selected	taxa	was	0.42,	compared	with	0.35	for	
the	direct	 clustering	 approach	on	 the	 full	 (559	 taxa)	 species	 com-
position	matrix	with	 seven	groups	 (seven	groups	produced	a	 local	
maximum	 in	 mean	 silhouette	 width	 for	 this	 approach),	 and	 0.29	
when	the	dendrogram	is	cut	at	eleven	groups	(Supporting	informa-
tion	Appendix	S4),	indicating	comparable,	possibly	even	slightly	in-
creased	performance,	for	the	SOM-	based	approach.

Species	 abundance	 datasets	 typically	 contain	 many	 rare	 taxa	
that	are	absent	in	the	vast	majority	of	samples.	These	absences,	rep-
resented	by	zeros,	can	make	their	distributions	strongly	skewed	and	
difficult	to	correct	for	with	any	transformation	(98%	of	the	values	of	
the	original	training	dataset	in	this	study	were	zeros).	One	common	
approach	to	mitigating	this	problem	has	been	to	eliminate	taxa	that	

are	not	present	 in	some	arbitrary	minimum	of	percentage	samples	
(e.g.,	5%;	Gauch,	1982).	 In	addition	 to	 its	arbitrary	nature,	 this	ap-
proach	can	be	problematic	in	that	common	taxa	occurring	at	nearly	
all	sites	may	be	selected	for	 inclusion	 in	the	analysis	 (even	though	
they	minimally	inform	the	ordination)	whereas	others	that	are	abun-
dant	at	relatively	few	sites	may	be	excluded	(even	if	they	are	strong	
indicators	of	a	particular	community	 type;	Poos	&	Jackson,	2012).	
The	method	presented	here	is	not	hindered	by	these	issues	because	
the	 GSI,	 the	 basis	 for	 selecting	 taxa	 for	 inclusion	 in	 the	 reduced	
model,	indicates	species	contribution	to	the	overall	organization	of	
the	SOM,	by	quantifying	the	gradient	 in	species	abundance	across	
a	given	topological	distance	in	the	SOM.	Had	the	5%	rule	of	thumb	
been	used	as	the	criterion	for	taxa	selection	in	the	present	analysis,	
20%	of	the	taxa	that	were	ultimately	retained	in	the	reduced	model	
would	have	been	excluded.

Another	 consequence	 of	 the	multitude	 of	 rare	 taxa	 in	 ecolog-
ical	 datasets	 is	 that	 they	 typically	 contain	 a	 great	 number	 of	 out-
liers,	 which	 present	 significant	 challenges	 to	 traditional	 clustering	
techniques	 (Johnson	&	Wichern,	1992).	The	problem	of	outliers	 is	
mitigated	with	SOMs	because	during	the	learning	phase,	map	units	
topologically	near	each	other	(defined	by	the	neighborhood	function	
in	Equation	3)	activate	each	other	 to	 learn	 from	 the	same	 training	
vector.	This	process	has	a	smoothing	effect	on	the	neurons’	weight	
vectors,	and	thus	removes	noise	(Kohonen,	2001).	Additionally,	each	
outlier	impacts	only	its	BMU	and	neurons	in	its	neighborhood,	leav-
ing	other	regions	of	the	map	are	unaffected.

Incumbent	upon	nearly	all	ecosystem	restoration	and	manage-
ment	 programs	 is	 the	 need	 for	 predicting	 and	monitoring	 ecosys-
tem	responses	to	natural	variability,	disturbance,	and	anthropogenic	
impacts,	often	as	they	relate	to	changes	in	species	composition.	In	
coastal	wetlands	of	Louisiana,	increased	inundation	is	expected	to	ac-
company	increased	freshwater	inflows	(Snedden,	Cable,	&	Wiseman,	
2007)	brought	about	by	Mississippi	River	diversions	designed	to	re-
introduce	sediments	to	the	rapidly	subsiding	delta	plain	(Peyronnin	
et	al.,	2017).	Excessive	inundation	has	been	shown	to	impede	below-
ground	marsh	production	of	community	dominants	in	regions	where	
river	diversions	are	being	planned	(Snedden	et	al.,	2015),	which	can	
diminish	organic	soil	accumulation,	the	primary	contributor	to	marsh	
vertical	 accretion	 in	 the	 inactive	 regions	 of	 the	 Mississippi	 River	
delta	 plain	 (Cahoon,	White,	 &	 Lynch,	 2011;	 DeLaune,	 Kongchum,	
White,	&	Jugsujinda,	2013;	DeLaune,	Whitcomb,	Patrick,	Pardue,	&	
Pezeski,	1989;	Nyman,	DeLaune,	Roberts,	&	Patrick,	1993;	Turner,	
Swenson,	&	Milan,	2002).	As	such,	the	success	of	these	projects	may	
largely	hinge	upon	the	ability	of	existing	marsh	vegetation	commu-
nities	 to	 self-	organize	 around	 conditions	 of	 increased	 inundation	
(Peyronnin	et	al.,	2017)	and	thus	there	exists	a	need	to	continuously	
classify	new	samples	of	species	composition	data	into	these	commu-
nity	types	as	new	data	become	available.	Traditional	unsupervised	
clustering	 techniques	are	unstable	 to	 the	addition	of	new	data,	as	
shifts	in	cluster	membership	of	previously	classified	sites	may	occur	
when	new	samples	are	added	to	previously	classified	datasets.	This	
instability	 is	 problematic	 in	 that	 each	 new	 classification	 exercise	
yields	a	new	classification	system	that	may	not	be	comparable	with	
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those	previously	obtained	(Černá	&	Chytrý,	2005).	With	SOMs,	new	
data	 can	 simply	 be	 projected	 onto	 the	 existing,	 trained	 network,	
allowing	for	objective,	effective	and	efficient	classification	as	they	
become	available.	Thus,	differences	between	expected	or	predicted	
outcomes	and	actual	observations	can	be	readily	detected,	making	
SOMs	an	ideal	tool	for	monitoring	and	adaptive	management.

Though	several	aspects	of	SOMs	make	them	an	attractive	tech-
nique	 for	 ordination	 and	 classification	 of	 floral	 and	 faunal	 assem-
blages	it	is	important	to	bear	in	mind	that,	while	offering	an	approach	
that	 is	 largely	 free	of	assumptions,	SOMs	still	carry	a	 large	subjec-
tive	component	that	requires	analyst	input	(e.g.,	specifying	network	
size,	 learning	 rates,	 clustering	 method,	 size	 of	 training	 dataset).	
Additionally,	 SOMs	 provide	 no	 significance	 level	 for	 the	 gradients	
they	 identify,	and	 (unlike	eigen-	based	techniques)	 they	do	not	par-
tition	the	variance	explained	by	these	gradients.	Though	SOMs	are	
robust	to	issues	such	as	skewness,	outliers,	rare	taxa,	and	classifying	
new	samples	without	altering	the	existing	partition,	these	issues	can	
also	be	addressed	with	other	approaches	such	as	data	transforma-
tion,	noise	clustering	(DeCáceres,	Font,	&	Oliva,	2010),	downweight-
ing	of	rare	species,	fuzzy	classification	frameworks	(DeCáceres	et	al.,	
2010),	 and	 supervised	 classification	 approaches	 (Černá	 &	 Chytrý,	
2005;	 van	 Tongeren,	 Gremmen,	 &	Hennekens,	 2008).	 And	 like	 all	
unsupervised	 classification	 methods,	 SOMs	 only	 perform	 well	 on	
samples	 containing	 combinations	 of	 taxa	 that	 are	 similar	 to	 those	
presented	to	it	during	the	learning	phase.	Thus,	it	is	important	to	en-
sure	that	the	set	of	training	samples	are	representative	of	the	set	of	
new	samples	the	analyst	expects	to	classify.	However,	one	key	distin-
guishing	feature	of	SOMs	is	their	capacity	to	facilitate	visualization	
of	taxa	on	the	SOM	in	a	way	that	provides	semi-	quantitative	infor-
mation	regarding	their	abundance	in	the	space	of	their	sampling	lo-
cations	through	examination	of	component	planes	(Astel,	Tsakovski,	
Barbieri,	&	Simeonov,	2007).	In	this	fashion,	SOMs	offer	an	avenue	
for	combining	R-	mode	and	Q-	mode	clustering	(Li	et	al.,	2015).

Future	efforts	should	expand	the	utility	of	this	assemblage	classi-
fication	approach	by	linking	the	community	types	delineated	here	to	
environmental	variables	with	predictive	models	based	on	either	sta-
tistical	 (e.g.,	multinomial	 logistic	regression;	see	Snedden	&	Steyer,	
2013)	or	neural	network	(e.g.,	multilayer	perceptron;	see	Park	et	al.,	
2006a)	predictive	models.	Additionally,	sites	classified	with	this	ap-
proach	into	community	types	based	on	their	in-	situ	species	compo-
sition	data	can	 subsequently	 serve	as	 training	data	 for	 supervised	
classification	of	 remotely	 sensed	multispectral	 imagery	 to	provide	
high-	resolution	 (10	m)	spatial	data	of	marsh	vegetation	community	
zonation	across	coastal	landscapes.
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